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Diaphragms shall be considered rigid when the

maximum lateral deformation of the diaphragm is

less than half the average interstory drift of the

associated story.  Diaphragms that are neither flexible

nor rigid shall be classified as stiff.  The interstory

drift and diaphragm deformations shall be estimated

using the seismic lateral forces from Section 5.3 or

5.4 of FEMA 302.

(2)  Flexibility considerations.  The in-plane

deflection of the floor diaphragm shall be calculated

for an in-plane distribution of lateral force consistent

with the distribution of mass, as well as all in-plane

lateral forces associated with offsets in the vertical

seismic framing at that floor.  The deformation of the

diaphragm may be neglected in mathematical models

of buildings with rigid diaphragms.  Mathematical

models of buildings with stiff diaphragms shall

explicitly include diaphragm flexibility.

Mathematical models of buildings with flexible

diaphragms should explicitly account for the

flexibility of the diaphragms.  For buildings with

flexible diaphragms at each floor level, the vertical

lines of seismic framing may be designed

independently, with seismic masses assigned on the

basis of tributary area.  Diaphragm flexibility results

in:  (1) an increase in the fundamental period of the

building, (2) decoupling of the vibrational modes of

the horizontal and vertical seismic framing, and (3)

modification of the inertia force distribution in the

plane of the diaphragm.  There are numerous single-

story buildings with flexible diaphragms.  For

example, precast concrete tilt-up buildings with

timber-sheathed diaphragms are common throughout

the United States.  An equation for the fundamental

period of a single-story building with a flexible

diaphragm is presented in the following equation:

( )0.50.0780.1= dwT ∆+∆ (7-5)

where ∆ w and ∆ d are in-plane wall and diaphragm

displacements in inches, due to a lateral load, in the

direction under consideration, equal to the weight of

the building.  For the displacements in mm, the

calculated value of T shall be multiplied by 5.  Wall

displacements shall be estimated for each line of

framing.  For multiple-bay diaphragms, lateral load

equal to the gravity weight tributary to the diaphragm

bay under consideration shall be applied to each bay

of the building to calculate a separate period for each

diaphragm bay.  The period so calculated that

maximizes the equivalent base shear shall be used for

design of all walls and diaphragms in the building.

(3)  Rotation.  In cases where there is a lack of

symmetry either in the load or the reactions, the

diaphragm will experience a rotation.  Rotation is of

concern because it can lead to vertical instability.

This is illustrated in the following cases: the

cantilever diaphragm, and the diaphragm supported

on three sides.

(a)  Building with a cantilever diaphragm

(an example is shown in Figure 7-48).  The layout of

the resisting walls is shown in Figure 7-48, part a.  If

the backspan is flexible relative to the walls (Figure

7-48, part b), the forces exerted on the backspan by

the cantilever are resisted by walls B, C, and D,

provided there are adequate collectors.  If the

backspan is relatively rigid (Figure 7-48, part c), the

load from the cantilever is resisted by all four walls
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(A, B, C, and D); a rigidity analysis is needed in

order to determine the forces in the walls.

(b)  Building with walls on three sides (an

example is shown in Figure 7-49).  For transverse

(north-south) forces (Figure 7-49, part a), this is a

simple case: because of symmetry of load and

reactions, the end walls share the load equally.  For

longitudinal (east-west) forces (Figure 7-49, part b),

there is an eccentricity between the resultant of the

load and the centerline of the one east-west resisting

wall, wall C.  The analysis is simplified by treating

the load as a combination of the load, W, acting

directly on the wall, and the couple M = WD/2

(Figure 7-49, part c).  The direct force induces a

direct shear, W, on the diaphragm and a reaction, W,

in Wall C (Figure 7-49, part d); the moment, M, is

resisted by walls A and B (Figure 7-49, part e),

causing a counterclockwise rotation of the

diaphragm.  A particular concern with this type of

building is the deflection on the corners at the open

side. If this is excessive, it can lead to vertical

instability in the southwest and southeast corners.

1.  Flexible diaphragm.  In an all-wood

building, the concern about rotation is met by

limitations on the size and proportions of the

diaphragm.  In buildings with walls of concrete or

masonry, the greater weight causes greater concern

for rotation, and there are special limitations on the

span/width ratio of the diaphragms.

2.  Rigid diaphragm.  If the diaphragm is

rigid, the design of the building will consider the

effects of torsion.  The concept of orthogonality does

not apply.

(4)  Torsion, in a general sense, occurs in a

building whenever the location of the resultant of the

lateral forces, i.e., the center of mass, cm, at and

above a given level does not coincide with the center

of rigidity, cr, of the vertical-resisting elements at

that level.  If the resisting elements have different

deflections, the diaphragm will rotate.  Torsion, in

this general sense of rotation, occurs regardless of the

stiffness properties of the diaphragms and the walls

or frames.  For purposes of design, however, the

procedure for dealing with torsion does depend on

these stiffness properties.

(a)  Flexible diaphragms.  Flexible

diaphragms such as wooden diaphragms can rotate,

but cannot develop torsional shears.  For example, a

single-span diaphragm with a relatively stiff shear

wall at one end and a more flexible frame at the other

end will rotate because the two resisting elements

have different deflections.  Flexible diaphragms,

however, are considered incapable of inducing forces

in the walls or frames that are perpendicular to the

direction of the design forces; i.e., flexible

diaphragms are said to be incapable of taking

torsional moments.  All of the lateral load is taken by

the walls that are parallel to the lateral forces; none is

taken by the other walls.  (The building with walls on

three sides is a special case and entails special

limitations, as discussed above.)  Lateral loads are

usually distributed to the resisting walls by using the

continuous beam analogy.  There is no rigidity

analysis, no calculation of the cm and the cr.  If there

are uncertainties about the locations of the loads and

the rigidities of the structural elements, the design

can be adjusted to bracket the range of possibilities.
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(b)  Rigid diaphragms.  When rigid

diaphragms rotate, they develop shears in all of the

vertical-resisting elements.  In the example (Figure 7-

50) there is an eccentricity in both directions, and all

five walls develop resisting forces via the diaphragm.

(c)  Deformational compatibility.  When a

diaphragm rotates, whether it is rigid or flexible, it

causes displacements in all elements attached to it.

For example, the top of a column will be displaced

with respect to the bottom.  Such displacements must

be recognized and addressed.

(d)  Analysis for torsion.  The method of

determining torsional forces is indicated in Figure 7-

50.  The diaphragm load, Fpx, which acts through the

cm, is replaced by an equivalent set of new forces.

By adding equal and opposite forces at the cr, the

diaphragm load can now be described as a

combination of a force component, Fpx (which acts

through the cr) and a moment component (which is

formed by the couple of the two remaining forces Fpx

separated by the eccentricity e).  The moment, called

the torsional moment, MT, is equal to Fpx times e.

The torsional moment is often called the “calculated”

torsion, because it is based on a calculated

eccentricity; also this name distinguishes it from the

“accidental” torsion, which is described below.  In

the modified loading, the force Fpx acts through the cr

instead of cm; therefore, it causes no rotation and it is

distributed to the walls, which are parallel to Fpx in

proportion to their relative rigidities.  The torsional

moment is resolved into a set of equivalent wall

forces by a procedure similar to that used for finding

forces on bolts in an eccentrically loaded group of

bolts.  The formula is analogous to the torsion

formula τ  = Tc/J.  The torsional shear forces can

thus be expressed by the formula 2/ kdkdMF Tt Σ= ,

where k is the stiffness of a vertical-resisting element,

d is the distance of the element from the center of

rigidity, and Σ kd2 represents the polar moment of

inertia.  For the wall forces, the direct components

due to Fpx at the cr are combined with the torsional

components due to MΤ.  In the example shown on

Figure 7-50, the torsional moment is

counterclockwise, and the diaphragm rotation will be

counterclockwise around the cr.  The direct

component of the load is shared by walls A and B,

while the torsional component of the load is resisted

by walls A, B, D, C, and E.  Where the direct and

torsional components of wall force are the same

direction, as in wall A, the torsional component adds

to the direct component; where the torsional

component is opposite to the direct component, as in

wall B, the torsional component subtracts from the

direct.  Walls C, D, and E carry only torsional

components; in fact, their design will most likely be

governed by direct forces in the east-west direction.

(e)  Accidental torsion.  Accidental torsion is

intended to account for uncertainties in the

calculation of the locations of the cm and the cr.  The

accidental torsional moment, MA, is obtained using an

eccentricity, eacc, equal to 5 percent of the building

dimension perpendicular to the direction of the lateral

forces; in other words, MA = Fpx x eacc.  For the

example of Figure 7-50, the accidental torsion for

forces in the north-south direction is MT = Fpx x

0.05L.  In hand calculations, MA is treated like MT,

except that absolute values of the resulting forces are
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used so that the accidental torsion increases the total

design force for all walls.  In computer calculations,

the accidental torsion may be handled by running one

analysis, using for eccentricity the calculated

eccentricity plus the accidental eccentricity, then

running a second analysis, using the calculated minus

the accidental eccentricity, and finally, selecting the

larger forces from the two cases.

(f)  Dynamic amplifications of torsion.

Section 5.3.5.3 of FEMA 302 specifies dynamic

amplifications for Type 1 torsional irregularities in

Seismic Design Category C, D, E, and F structures

analyzed by the ELF procedure.

(5)  Flexibility limitations.  The deflecting

diaphragm imposes out-of-plane distortions on the

walls that are perpendicular to the direction of lateral

force.  These distortions are controlled by proper

attention to the flexibility of the diaphragm.  A

diaphragm will be designed to provide such stiffness

that walls and other vertical elements laterally

supported by the diaphragm can safely sustain the

stresses induced by the response of the diaphragm to

seismic motion.

(a)  Empirical rules.  Direct design is not

feasible because of the difficulty of making reliable

calculations of the diaphragm deflections; instead,

diaphragms are usually proportioned by empirical

rules.  The design requirement is considered to be

met if the diaphragm conforms to the span and

span/depth limitations of Table 7-24.  These

limitations are intended as a guide for ordinary

buildings.  Buildings with unusual features should be

treated with caution.  The limits of Table 7-24 may

be exceeded, but only when justified by a reliable

evaluation of the strength and stiffness characteristics

of the diaphragm.  If the diaphragm is providing out-

of-plane lateral support to the top of a relatively short

or stiff concrete or masonry wall, it should be noted

that wall will experience the diaphragm deflections

plus the in-plane deflection of the vertical lateral-

load-resisting system.  For use of Table 7-24, the

flexibility category in the first column of the table

can be determined with little or no calculation:

concrete diaphragms are rigid; bare metal deck

diaphragms can be stiff or flexible; plywood

diaphragms can be considered to be rigid when used

in light wood framing, but should be considered to be

stiff or flexible with other framing systems; special

diaphragms of diagonal wood sheathing are flexible;

and conventional diaphragms of diagonal wood

sheathing and diaphragms of straight wood sheathing

are very flexible (very flexible diaphragms are

seldom used in new construction because of their

small capacities).

(b)  Diaphragm deflections.  When a

deflection calculation is needed, the following

procedure will be used.

1.  Deflection criterion.  The total

deflection of the diaphragm under the prescribed

static forces will be used as the criterion for the

adequacy of the stiffness of a diaphragm.  The

limitation on the allowable amount relative to out-of-

plane deflection (drift) of the walls, between the level

of the diaphragm and the floor below, is equal to the

deflection of the orthogonal walls at the ends of the

diaphragm, plus the deflection of the diaphragm, as
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Diaphragm Span / Diaphragm Depth Limitations

Flexibility Category Allowable Span of
Diaphragm,

ft.*

Concrete or   Masonry Walls Other Walls

Flexible 100 2:1 2½ :1
Stiff 200 2½ :1 3½ :1

Rigid 350 3½ :1 4:1
*1 foot = 0.3m

Table 7-24:  Span and Depth Limitations on Diaphragms
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computed in the following paragraphs.

2.  Deflection calculations.  The total

computed deflection of diaphragms (∆ d) under the

prescribed static seismic forces consists of the sum of

two components: the first component is the flexural

deflection (∆ f); the second component is the shearing

deflection (∆ w).  When most beams are designed, the

flexural component is usually all that is calculated,

but for diaphragms, which are like deep beams, the

shearing component must be added to the flexural

component.

i.  Flexural component.  This is

calculated in the same way as for any beam.  For

example, for a simple beam with uniform load, the

flexural component is obtained from the familiar

formula ∆ f = 5wL4/384EI.  The only question is the

value of the moment of inertia, I.  For diaphragms

whose webs have uniform properties in both

directions (concrete or a flat steel plate), the moment

of inertia is simply that of the diaphragm cross-

section.  For diaphragms of fluted steel deck, or

diaphragms of wood, whose stiffness is influenced by

nail slip and chord-joint slip, the flexural resistance

of the diaphragm web is generally negligible, and the

moment of inertia is based on the properties of the

diaphragm chords.  For a diaphragm of depth D with

chord members each having area A, the moment of

inertia, I, equals 2A(D/2)2, or AD2/2.

ii.  Shearing Component.  The shearing

component of deflection can be derived from the

following equation:

6
1

10
FLqave

w =∆ (7-6)

where:

∆ w =  web component of diaphragm

deflection, in. (mm).

qave =  average shear in diaphragm, lbs. /ft.

(N/m).

L1 =  distance from adjacent vertical

resisting element (i.e., such as a shear wall) and the

point to which the deflection is to be determined, ft.

(m).

F =  flexibility factor, micro inches per foot

of span stressed with a shear of one pound per foot

(micro millimeters per meter of span stressed with a

shear of one Newton per meter of span).

Values of the flexibility factor, F, and the allowable

shear per foot, qD, for steel decking are given in

manufacturers’ catalogs, as well as the Diaphragm

Design Manual of the Steel Deck Institute (SDI).

Deflection calculations for concrete diaphragms are

seldom required, but the deflection can be calculated

by the conventional beam theory.  For example, for a

diaphragm with a single span of length, L, with a

total load, W, that is uniformly distributed, the

maximum shearing deflection is:

∆ w
WL
A G

= α
ω8

 (7-7)

where:

" =  a form factor (L/D for prismatic webs)

Aw  =  area of the web
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G =  the shear modulus

noting that:

R, the end reaction, equals W/2 and qave =

R/2D = W/4D, L = 2L1, and Aw = Dt

Where t is the thickness of the web, and D is the

depth of the diaphragm, the formula for shearing

deflection can also be expressed as:

tG
Lq ave α

ω 1=∆ (7-8)

As noted above, this is only applicable to webs of

uniform properties. For a concrete slab with " = 1.5,

G = 0.4 E, and E = 33w 
1 5. 'fc , the formula in

English units becomes:

∆ ω =
q L

tw
ave

c

1

1 588. .. 'f
(7-9)

where:

t =  thickness of the slab, in.

w =  unit weight of the concrete, lbs. /cu. ft.

Recent editions of the SDI Diaphragm Design

Manual provide the following alternative equation for

the deflection of steel deck diaphragms:

)w = '

2

8DG
wL

(7-10)

where:

w =  uniform lateral shear load on the

diaphragm, K/ft. (N/m).

L =  diaphragm span, ft. (m).

D =  depth of diaphragm, ft. (m).

G’ =  effective shear modulus calculated

from tabulated values based on profile and thickness

of deck and type and spacing of connectors.

The effective shear modulus , G’, is related to the

flexibility factor, F, as follows:

G’ = 
F

310 (7-11)

     c.     Design of Diaphragms.  A deep-beam

analogy is used in the design.  Diaphragms are

envisioned as deep beams with the web (decking or

sheathing) resisting shear and the flanges (spandrel

beams or other members) at the edges resisting the

bending moment.

(1)  Unit shears.  Diaphragm unit shears are

obtained by dividing the diaphragm shear by the

length or area of the web, and are expressed in

pounds per foot (N/m) (for wood and metal decks) or

pounds per square inch (MPa) (for concrete).  These

unit shears are checked against allowable values for

the material.  Webs of precast concrete units or

metal-deck units will require details for joining the

units to each other and to their supports so as to

distribute shear forces.


